Section 3

Threading and Locking
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Definitions

What is a thread?

A single flow of control with a process

Why use threads?
Exploit latency, concurrency

Event-driven software
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Definitions

What is a lock?
Serializes access to some critical region of code or data
Used to enforce mutual exclusion concurrency control

Locks need help from hardware

Different kinds of locks
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Dangers

What could go wrong?
Impacts Performance
Hard to debug
Deadlocks

How do we fix this?
Punt (if collisions aren’t our problem)

Resource hierarchy/Conductor/Chandy-Misra



Using Threads

Creation
Termination
Detachment and Joining

Self and Equal




Using Threads

Thread (class)

Runnable (interface)

ForkJoin

ThreadPools/Executor Services



Project 0 Review




Project 1 Suggestions

John’s Suggestion
One thread for listening (waiting for server probes)

One thread for keyboard input that handles server
communication initiated by keyboard input

One thread for periodic re-registration
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Project 1 Reminders

John’s Suggestion
One thread for listening (waiting for server probes)
One thread for keyboard input that handles server
communication initiated by keyboard input

One thread for periodic re-registration

Remember
Terminate cleanly
You need to re-register

Modularity



+ .
Questions?

Java:

http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

http://docs.oracle.com/cd/E13150 0l/jrockit jvm/jrockit/geninfo/diagnos/
thread basics.html

C/Unix:

http://www.mit.edu/people/proven/IAP 2000/index.html

http://www.yolinux.com/TUTORIALS/
LinuxTutorialPosixThreads.html




