Section 3

Threading and Locking




+ oo
Definitions

What is a thread?



+ oo
Definitions

What is a thread?

A single flow of control with a process



+ oo
Definitions

What is a thread?

Why use threads?



+ oo
Definitions

What is a thread?

A single flow of control with a process

Why use threads?
Exploit latency, concurrency

Event-driven software



==
Dangers

What could go wrong?



==
Dangers

What could go wrong?

Race Conditions



Dangers

What could go wrong?

Race Conditions

How do we fix this?



Dangers

What could go wrong?

Race Conditions

How do we fix this?

Locking




+ oo
Definitions

What is a lock?



Definitions

What is a lock?

Serializes access to some critical region of
code or data

Used to enforce mutual exclusion
concurrency control



Definitions

What is a lock?

Serializes access to some critical region of
code or data

Used to enforce mutual exclusion
concurrency control

Locks need help from hardware



+ oo
Definitions

What is a lock?
Serializes access to some critical region of code or data
Used to enforce mutual exclusion concurrency control

Locks need help from hardware

Different kinds of locks



==
Dangers

What could go wrong?



==
Dangers

What could go wrong?

Impacts Performance



Dangers

What could go wrong?
Impacts Performance

Hard to debug



Dangers

What could go wrong?
Impacts Performance
Hard to debug

Deadlocks




Dangers

What could go wrong?
Impacts Performance
Hard to debug

Deadlocks

How do we fix this?




==
Dangers

What could go wrong?
Impacts Performance
Hard to debug

Deadlocks

How do we fix this?

Punt (if collisions aren’t our problem)



Dangers

What could go wrong?
Impacts Performance
Hard to debug
Deadlocks

How do we fix this?
Punt (if collisions aren’t our problem)

Resource hierarchy/Conductor/Chandy-Misra



Using Threads

Creation
Termination
Detachment and Joining

Self and Equal




Using Threads

Thread (class)

Runnable (interface)

ForkJoin

ThreadPools/Executor Services



Project 0 Review




Project 1 Suggestions

John’s Suggestion
One thread for listening (waiting for server probes)

One thread for keyboard input that handles server
communication initiated by keyboard input

One thread for periodic re-registration



+
Project 1 Reminders

John’s Suggestion
One thread for listening (waiting for server probes)
One thread for keyboard input that handles server
communication initiated by keyboard input

One thread for periodic re-registration

Remember
Terminate cleanly
You need to re-register

Modularity



+ .
Questions?

Java:

http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

http://docs.oracle.com/cd/E13150 0l/jrockit jvm/jrockit/geninfo/diagnos/
thread basics.html

C/Unix:

http://www.mit.edu/people/proven/IAP 2000/index.html

http://www.yolinux.com/TUTORIALS/
LinuxTutorialPosixThreads.html




